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We argue that maintaining a synchronized regime between different chaotic systems requires a net flow of
energy between the guided system and an external energy source. This energy flow can be spontaneously
reduced if the systems are flexible enough as to structurally approach each other through an adequate adaptive
change in their parameter values. We infer that this reduction of energy can play a role in the synchronization
of bursting neurons and other natural oscillators.
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I. INTRODUCTION

Two identical chaotic systems conveniently coupled can
reach spontaneously a regime of complete synchronization
that is often called identical synchronization �1,2�. If the sys-
tems are different complete synchronization does not spon-
taneously occur although different synchronization regimes
can be forced through the establishment of an appropriate
coupling device �3–9�. There is not much work on the deri-
vation of measures to evaluate the interdependences of the
synchronizing systems �10–12�. A physically detectable dif-
ference between the spontaneous synchronization of identi-
cal systems and the forced synchronization of different cha-
otic systems stems from the fact that in the former case the
maintenance of the synchronized regime is costless while in
the latter there is certainly an energy cost �12�. In both situ-
ations the maintenance of the synchronized regime requires a
coupling device that cannot be removed. Nevertheless, in the
case of identical systems there is no flow of energy through
this coupling device while in the case of different systems it
must be a continuous flow of energy with a net nonzero
average value per unit time. On the other hand, a forced
synchronized regime between two nonidentical systems cre-
ates conditions that facilitate their adaptation in the sense
that the guided system can cause the values of its parameters
to approach the ones in the guiding system �13�.

In this paper we show that this adaptive flexibility makes
it possible for nonidentical coupled oscillators to attain a
synchronized regime at a lower cost than they would do
without the adaptation ability. Consequently, with this result,
we argue that in some real physical and biological environ-
ments, where maintaining a synchronized regime among
some systems is an essential feature of the behavior, non-
identical systems of the same family can spontaneously
evolve toward closer values of their parameters in order to
maintain synchronization at a much lower value of the en-
ergy cost. Biological oscillators are structures particularly
flexible in adapting their parameters. Currently, great effort is
being devoted to the study of models showing the irregular
spike bursting characteristic of some neurobiological sys-
tems �14–17�, but no extensive work has been done on the
energy implications of the synchronization process.

In this section we quickly review the aspects of synchro-
nization energy �12� and adaptation �13� that we need to put
together in this work. Section II presents the flows of energy
that appear in the synchronization of chaotic oscillators with
and without adaptation. Finally, in Sec. III we discus the
results and present our conclusion.

A. Feedback synchronization energy

Consider an autonomous dynamical system ẋ= f�x� where
x�Rn and f :Rn→Rn is a smooth function. We can express
the velocity vector field f�x� as sum of two vector fields
f�x�= fc�x�+ fd�x�, one of them fd�x� containing its diver-
gence and the other fc�x� containing its full rotation �18�. In
this decomposition fc is the conservative component of the
flow and fd is the dissipative component. For the conserva-
tive component fc there exists an energy-type function H�x�
that remains constant, that is, Ḣ�x�=0. Thus, the equation
�HTfc�x�=0 defines for each dynamical system a partial dif-
ferential equation from which its energy function H�x� can
be evaluated �12�. The energy is dissipated, passively or ac-
tively, due to the divergent component of the velocity vector

field according to the equation Ḣ=�HTfd�x�. The existence
of a function of the phase space variables that can be used to
measure the energy of a particular state of a given chaotic
system permits the evaluation of the energy exchange of the
system with its environment when it moves along a particu-
lar trajectory. In what follows we are going to use the ex-

pression Ḣ=�HTfd�x� to evaluate the energy balance that
takes place when the system is forced to synchronize another
guiding oscillator.

Let us force the chaotic oscillator ẋ= f�x� to synchronize a
different guiding chaotic system ẏ=g�y� via feedback cou-
pling according to the scheme

ẏ = g�y,p� ,

ẋk = f�xk,q� + K�y − xk� , �1�

where x ,y�Rn , f ,g :Rn→Rn are smooth functions, K is the
n�n diagonal matrix with diagonal entries ki=k�0, p and q
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stand for the parameters of the oscillators, and xk�t� indicates
the states of the guided system when the gain parameter is
set to k. Notice that K�y−xk� is the coupling interface re-
quired in order to be physically able to implement the cou-
pling of both systems ẋ= f�x� and ẏ=g�y�.

As the trajectory xk�t� remains confined to an attractive
region of phase space for every value of k, the net average
energy variation corresponding to system f�xk�+K�y−xk�
will be zero. That is,

���Hf�xk��T�fd�xk� + K�y − xk��� = 0,

where the angular brackets represent averaging on the attrac-
tor and Hf denotes the energy function of the system ẋ
= f�x�.

Thus, the average energy per unit time P�k�
����Hf�xk��TK�y−xk�� that the coupling mechanism must
provide the guided system with, in order to maintain the
degree of synchronization attained with a coupling of gain
parameter k and, consequently, force it to follow an unnatural
trajectory xk�t�, will be

P�k� = − ���Hf�xk��Tfd�xk�� . �2�

According to Eq. �2�, the coupling device provides the
flow of energy needed to compensate the energy exchange of
system f�xk� with its environment. This energy can be con-
sidered as the cost of maintaining that particular level of
synchronization.

The degree of synchronization reached, measured in terms
of the error vector e=xk−y, depends on the magnitude of the
gain parameter k. The norm of the synchronization error can
be made arbitrarily small as long as a sufficiently large gain
k is implemented. To find the cost of maintaining a regime of
complete synchronization we can substitute y�t� for xk�t� in
Eq. �2�.

B. Adaptation

If the coupled systems are homochaotic, that is g� f but
p�q, and the gain parameter k is large enough as to make
the errors in the variables e=xk−y small, an operational law
that adapts the parameters of the guided system to the ones
of the guiding system is given by �13�

ėi
p = − �	

l=1

n 
 �f l�xk,q�
�qi

�
�y,p�

el� , �3�

where ep=q− p denotes the vector of parameter errors, which
does not need to be small, and the summation is over every
component of the vector field f . The above law is general
and can be used to find specific adaptive laws to any kind of
homochaotic systems provided they are coupled through a
feedback scheme of large enough gain. One important char-
acteristic of this law is that it can be implemented in a real
environment even without a precise knowledge of the struc-
ture of the oscillators as long as the full state of the guiding
system and the relevant parameters are accessible.

In Fig. 1 we show the results of the adaptation process
that has been implemented to illustrate the main concern of

this work, namely, studying the flow of energy that occurs
when systems with adaptation capability are forced to syn-
chronize. Details of the particular systems used will be given
later on. Figures 1�a�–1�c� show adaptation when all param-
eters are available and Figs. 1�d�–1�f� when only two param-
eters are accessible for adaptation. In this last situation cor-
rect adaptation of the accessible parameters is also achieved.
We emphasize that no particular knowledge of the structure
of the systems has been required, what underlines the fact
that adaption is a very general ability that can potentially be
successful with many different families of chaotic oscillators.
The very fact of two systems being forced to synchronize
makes it possible that a general adaptation law becomes op-
erative.

II. FLOW OF ENERGY

The average energy per unit time required to maintain a
forced synchronized regime between coupled chaotic oscil-
lators, Eq. �2�, and the adaptation law of parameters, Eq. �3�,
will be used in this section to study the balance of energy in
the synchronization of chaotic oscillators of the Lorenz fam-
ily �19�. For this family, a particular solution of its energy
equation is the nondefinite quadratic form H= 1

2 �−�� /�� /x2

+y2+z2� �12�. Using this energy function, the flows of en-
ergy that appear when a member of the Lorenz family is
forced to synchronize to another oscillator can be evaluated.

A. Flow of energy without structural adaptation

We first evaluated the balance of energy in the synchro-
nization of two Lorenz chaotic systems with parameters �
=16, �=45.92, �=4 for the drive and �=10, �=30, �=3 for
the driven system, coupled via feedback coupling in the way
described by Eq. �1�. Figure 2 shows the energy per unit time

dissipated by the driven system, Ḣ�xk�=�HTfd�xk�, through-
out its motion on the attractor at four different values of the
gain parameter k �the energy of the drive is not affected by
k�. This dissipated energy has been averaged over a conve-
nient length of time in order to avoid large fluctuations. The
temporal pattern of energy dissipation per unit time is similar

FIG. 1. Adapted parameters. In �a�, �b�, and �c� the full set of
parameters is accessible for adaptation. In �d�, �e�, and �f� only two
parameters are accessible. Time is in arbitrary units.
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for the four values of k displayed but as the coupling forces
the guided system to move away from its natural regions of
the state space the average dissipated energy per unit time
increases with the coupling strength k. For k=0, that is, with
no guidance at all, the driven system moves on its natural
region of the state space and its averaged dissipated energy
on the attractor is zero �not shown in the figure to improve
clarity�.

For a more comprehensive understanding of the depen-
dence of the average dissipated energy per unit time, given
by −P�k� in Eq. �2�, on the strength of the coupling, we have
studied its evolution for a continuous range of values of k.

First we synchronize two identical Lorenz systems with
parameters �=16, �=45.92, �=4, coupled in the way de-
scribed by Eq. �1�. The gain parameter k has been varied
smoothly ranging from k=0 to 2. For each value of k the
degree of synchronization, measured as the norm of the syn-
chronization error in the variables 
xk−y
, and the time de-

rivative of the energy Ḣ have been averaged along a trajec-
tory of the coupled system long enough to be considered
averaged on the attractor. Figure 3�a� shows the progress of
the synchronization regime. Identical synchronization ap-
pears at a value of the gain parameter of approximately k

=1.5. Figure 3�b� shows how the average dissipation of en-
ergy changes as the coupling interface forces the guided sys-
tem attractor to move through different regions of the phase
space. As soon as the coupling strength is connected the
average energy derivative of the guided system becomes
negative, that is, it starts to dissipate on average an energy
that the coupling device will have to provide in order to
maintain the forced regime. The required energy increases
with the gain parameter k until the onset of the dynamical
changes that will produce the identical synchronization re-
gime. At values of k in the neighborhood of k=1.2 the cou-
pling device forces bifurcations in the quality of the attrac-
tors that quickly lead the guided system to reach identical
synchronization, with no energy consumption at all. Note
that the no consumption of energy in the identical synchro-
nization regime is a long time average result but that there
are still local variations of energy.

To illustrate the ability of this energy approach to improve
our understanding of the transition to synchrony, we present
in detail the energy dissipated by the guided system at two
different values of the gain parameter k, the one that just
triggers synchrony, k=1.5, and another one, k=1.4, a little
before synchrony is reached. Figure 4�a� shows an average
over five units of time of the energy dissipated by the guided
system at k=1.4. Synchrony is about to happen. It can be
clearly appreciated how the dissipated energy remains most
of the time oscillating inside the threshold of identical syn-
chronization, which is shown in Fig. 4�b� for k=1.5 as ref-
erence, and jumps from time to time to higher values of
dissipation corresponding to regions of the phase space
where the basins of the attractors have not yet collapsed to
the synchronization manifold.

Second, we synchronize two nonidentical Lorenz systems.
The guiding system remains the same as before while the
guided system has as parameter values �=10, �=30, �=3.
Figure 5�a� shows the degree of synchronization attained at
different values of the gain parameter. Figure 5�b� shows the
average energy dissipated per unit time by the guiding Lo-
renz system at different values of the gain parameter k. The
average dissipation of energy per unit time has a minimum at
a value of the gain parameter in the neighborhood of k=10.
For larger values of the forcing of the coupling the average
dissipated energy asymptotically increases toward its limit
value. For each value of the gain parameter the correspond-
ing synchronization regime can only be maintained if the

FIG. 2. A Lorenz system with parameters �16,45.92,4� guiding
another different Lorenz system with parameters �10,30,3�. Average
energy dissipation over twenty units of time on the attractor of the
guided system at four different values of the gain parameter k.
Energy is in arbitrary units.

FIG. 3. A Lorenz system with parameters �16,45.92,4� guiding
another identical Lorenz system at different values of the gain pa-
rameter k. �a� Synchronization error. �b� Average dissipated energy
per unit time by the guided system.

FIG. 4. Average over five units of time of the energy dissipated
by a Lorenz system with parameters �16,45.92,4� guided by another
identical Lorenz system. Coupling gain k= �a� 1.4 and �b� 1.5.
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coupling device provides the required energy to compensate
the dissipation flow. Contrary to what happens with identical
systems, in this case, identical synchronization does not
spontaneously occur. The synchronization error has to be
forced to remain small at the expense of some provision of
energy.

B. Flow of energy with structural adaptation

As we have seen in the previously analyzed case of two
different Lorenz systems, once they are coupled a continuous
flow of energy is needed for them to maintain a synchronized
regime. In this section we analyze the change in the balance
of energy of the guided system when its parameters are free
to adapt themselves to their nominal values in the guiding
system. The adaptation law has been implemented following
Eq. �3�. In a first experiment we have assumed that all the
three Lorenz parameters are available for adaptation. We as-
sume that they are coupled with a coupling strength large
enough to guarantee the convergence of the adaptation pro-
cedure. We have used k=30 for this experiment. The evolu-
tion of the values of the adapted parameters is shown in Figs.
1�a�–1�c�. We started the adaptation procedure at t=75 and
registered data between t=60 and 110 for proper observation
of the evolution of the dissipated energy during the process.
Figure 6�a� shows the degree of synchronization measured as
the norm of the vector of errors in the variables. As soon as
the adaptation procedure starts the average synchronization

error quickly decreases to zero, reflecting the fact that the
guided system has become structurally so close to the guid-
ing system that they can reach a regime of practically iden-
tical synchronization. In Fig. 6�b� we can see how the dissi-

pated energy changes from a value of about Ḣ=−1200,

corresponding to k=30, to the value Ḣ=0 that corresponds to
the identical synchronization regime.

In a second experiment we assume that only parameters �
and � are accessible. The values of the adapted parameters
are shown in Figs. 1�d�–1�f�. This time, in spite of the adap-
tation of parameters � and �, the parameter � remains dif-
ferent and identical synchronization cannot be reached. As
can be appreciated in Fig. 7�a�, the synchronization error
stabilizes itself at a nonzero average regime. This new aver-
age error is smaller than it was before the adaptation took
place. The energy balance of the synchronized regime also
changes drastically with the adaptation process. As the sys-
tems remain different the final regime is not a regime of zero
average energy exchange. As can be seen in Fig. 7�b�, the
adaptation process has led the guided Lorenz system to a
synchronized regime with a positive average flow of energy.
The net average flow of energy is also much smaller in the
new regime than it was before the systems were adapted.

III. DISCUSSION AND CONCLUSION

When a chaotic oscillator moves freely on its natural at-
tractor it moves endlessly through states of different energy
in phase space. That is to say, its energy is continuously
changing. Nevertheless, as it is trapped in the same region of
the phase space there is no net change of energy on average.
There is a balanced exchange of energy with its environment.
What the environment is depends on additional hypotheses
about the physical nature of the oscillator. For instance,
Pasini and Pelino �20� transform the Lorenz equations in
order to show that they can model a spinning rigid body
involving an external angular momentum and friction plus an
external forcing; they obtain, if the transformation is undone,
the same energy function that we attribute here to the Lorenz
system. For that Lorenz model the environment is a me-
chanical friction. The exchange of energy with the environ-
ment takes place in the dissipative elements of the chaotic
system; for instance, in the resistor if it is a chaotic electric
network. It should be noted that the resistor of a chaotic
electric network must be sometimes passive and some other

FIG. 5. A Lorenz system �16,45.92,4� guiding another different
Lorenz system �10,30,3� at different values of the gain parameter k.
�a� Synchronization error. �b� Average dissipated energy per unit
time by the guided system.

FIG. 6. Two coupled Lorenz systems with parameters
�16,45.92,4� and �10,30,3� for the guiding and guided systems, re-
spectively. Gain parameter k=30. Adaptation begins at t=75. �a�
Average over two units of time of the synchronization error. �b� The
same average for the dissipation of energy per unit time.

FIG. 7. Same caption as in Fig. 6. Only parameters � and � are
adapted.
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times active, that is the necessary nature of a self-maintained
oscillation. In conclusion, when a chaotic system moves
freely on its natural attractor its oscillatory regime consists of
a balanced exchange of energy between the system and its
environment that occurs spontaneously through the divergent
components of the system’s structure without concurrence of
any additional device. If, on the other hand, the system is
forced to synchronize to a different guiding system its oscil-
latory regime occurs on an unnatural region of the state space
where there is a nonzero net average exchange of energy
with its environment. This net flow of energy per unit time
requires the concurrence of a coupling device that includes
an external source of energy. This flow of energy is neces-
sary to maintain the synchronized regime and constitutes a
cost for the synchronization process. In other words, syn-
chrony cannot happen without a net energy consumption.
This consumption of energy can be reduced if the guided
system itself adapts its structure to become closer to the one
of the guiding system. Ideally, if the systems become identi-
cal their joint dynamics is attracted toward a regime of zero
error in the variables. This asymptotical limit regime of iden-
tical synchronization does not require a net flow from or
toward an external source of energy.

To shed light on this discussion we have reconstructed the
experiment of complete adaptation of two nonidentical Lo-
renz systems. This time the emphasis is placed on the energy
per unit time required to compensate the dissipation of en-
ergy of the guided chaotic oscillator, but in the form that is
provided by the external source through the coupling mecha-
nism ��Hf�xk��TK�y−xk�. Figure 8 shows by the solid line an
average over five units of time of this energy per unit time.
The energy dissipated per unit time by the guided system,
−��Hf�xk��Tfd�xk�, is also shown in dots. It can be seen that
before the adaptation occurs there is an oscillatory regime of
dissipation of energy that has to be matched by the external
source in order to preserve that degree of synchrony. If either

the required net provision of energy or the required rhythm
of the provision cannot be maintained by the external source,
synchrony will be discontinued. Under this perspective, syn-
chronization of nonidentical real systems does not seem to be
a trivial phenomenon to achieve. This situation notably
changes after adaptation. When the guided system becomes
equal to the guiding system it still keeps an oscillatory pat-
tern of energy dissipation but, this time, it is environmentally
balanced on average. Its chaotic regime precisely consists in
taking energy from its environment and giving it back to it,
in a perfect balance. Its net average need of energy from the
external source is zero. In Fig. 8 it can be seen how the
external supply of energy responds to the new situation. The
flow of energy from the source is zero. Not only is it zero on
average, as it should be, but also becomes identically zero in
value. To maintain synchrony in these circumstances is con-
siderably easier. The coupling mechanism plays no active
role. Nevertheless, it cannot be removed. The stable regime
of zero error in the variables does not exist without a change
in the dynamics introduced by the coupling and as soon as
the coupling device is removed the synchronized regime will
degrade.

Note that the fact of whether the function we have used is
a real energy function or not is not absolutely relevant for
our argument. Any nontrivial function of the coordinates of
the phase space is useful to show that the chaotic movement
cannot take place without a balancing movement in the vari-
ables of the coupling mechanism. This fact makes our argu-
ment robust in the sense that, whatever the energy of the real
system is, it will behave in the way we have shown. The fact
of having chosen the particular function we have used adds
to our argument the important detail of its compatibility with
a real energy.

Many real physical or biological processes involve syn-
chronization between different members of the same family
of systems that have similar, although not identical, values of
some distinctive parameters. Under these circumstances to
keep the process working involves a net flow of energy that
can be costly to maintain. We have shown that the very fact
of forcing synchronization between nonidentical systems
creates appropriate conditions for an efficient actuation of
adaptive laws able to make the systems structurally approach
each other, with the final result of a decrease in the synchro-
nization error and a decrease in the required flow of energy
to maintain the process. Biological structures are particularly
flexible in adapting their parameters and this mechanism of
minimization could make some of the required collective
behaviors energetically less costly and facilitate networking
in arrays of coupled chaotic oscillators. As the Lorenz equa-
tions might not model every required aspect of a real bio-
logical oscillator �21�, the analysis of specific problems, for
instance the study of the synchronization process between
single neurons, will require the particularization of the ideas
expressed in this paper to a more specific model of the phe-
nomenon under study.

FIG. 8. Average over five units of time of the energy provided
by the external source to synchronize two initially nonidentical Lo-
renz systems. Adaptation begins at t=75. Dots, the same average of
the energy dissipated by the guided oscillator. All parameter values
are the same as in Fig. 6.

MINIMIZATION OF THE ENERGY FLOW IN THE… PHYSICAL REVIEW E 72, 026223 �2005�

026223-5



�1� L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821
�1990�.

�2� L. Kocarev and U. Parlitz, Phys. Rev. Lett. 76, 1816 �1996�.
�3� L. Kocarev, A. Shang, and L. O. Chua, Int. J. Bifurcation

Chaos Appl. Sci. Eng. 3, 479 �1993�.
�4� M. G. Rosenblum et al., Phys. Rev. Lett. 76, 1804 �1996�.
�5� N. F. Rulkov et al., Phys. Rev. E 51, 980 �1995�.
�6� A. Hampton and D. H. Zanette, Phys. Rev. Lett. 83, 2179

�1999�.
�7� S. Boccaletti et al., Phys. Rev. E 61, 3712 �2000�.
�8� A. S. Pikovsky, M. G. Rosenblum, and J. Kurths,

Synchronization—A Universal Concept in Nonlinear Sciences
�Cambridge University Press, Cambridge, England, 2003�.

�9� J. Kurths et al., in Control and Synchronization in Chaotic
Dynamical Systems, focus issue of Chaos 13, 126 �2003�.

�10� X. Wang et al., Phys. Rev. E 67, 066215 �2003�.
�11� M. Żochowski and R. Dzakpasu, J. Phys. A 37, 3823 �2004�.
�12� C. Sarasola et al., Phys. Rev. E 69, 011606 �2004�.
�13� C. Sarasola et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 13,

177 �2003�.
�14� N. F. Rulkov, Phys. Rev. Lett. 86, 183 �2001�.
�15� R. Huerta et al., Phys. Rev. E 55, R2108 �1997�.
�16� M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. Lett. 92,

114102 �2004�.
�17� M. V. Ivanchenko et al., Phys. Rev. Lett. 93, 134101 �2004�.
�18� D. H. Kobe, Am. J. Phys. 54, 552 �1986�.
�19� E. N. Lorenz, J. Atmos. Sci. 20, 130 �1963�.
�20� A. Pasini and V. Pelino, Phys. Lett. A 275, 435 �2000�.
�21� F. T. Arecchi, E. Allaria, and I. Leyva, Phys. Rev. Lett. 91,

234101 �2003�.

SARASOLA et al. PHYSICAL REVIEW E 72, 026223 �2005�

026223-6


